Agent Architecture
Technical deep dive into how Crella Engine agents are built and operate.
Agent Structure
Every agent in the Crella Engine follows a consistent architecture:
flowchart TB
subgraph agent [Agent Structure]
Input[Input Handler]
Validate[Validator]
Process[Processor]
Output[Output Handler]
State[State Manager]
Log[Logger]
end
Input --> Validate
Validate --> Process
Process --> Output
State -.-> Process
Log -.-> Process
Agent Interface
Each agent implements a standard interface:
interface CrellAgent {
codename: string; // e.g., "ALPHA001"
name: string; // e.g., "Alpha"
role: string; // e.g., "Intake Agent"
capabilities: string[]; // List of abilities
// Configuration
costPerTask: number; // USD cost
avgProcessingTime: number; // milliseconds
// Methods
process(input: TaskInput): Promise<TaskOutput>;
validate(input: TaskInput): ValidationResult;
getStatus(): AgentStatus;
}
Agent Types
1. Stateless Agents
Most agents are stateless—they process input and return output without maintaining session state.
Examples: Alpha, Bravo, Charlie, Foxtrot
flowchart LR
In[Input] --> Agent[Stateless Agent]
Agent --> Out[Output]
2. Stateful Agents
Some agents maintain state across interactions.
Examples: Lima (workflow state), Kilo (learning state)
flowchart LR
In[Input] --> Agent[Stateful Agent]
Agent --> State[(State Store)]
State --> Agent
Agent --> Out[Output]
3. External Integration Agents
Agents that call external services.
Examples: Echo (LinkedIn, Google), Hotel (Email, SMS)
flowchart LR
In[Input] --> Agent[Integration Agent]
Agent --> API[External API]
API --> Agent
Agent --> Out[Output]
Communication Protocol
Agents communicate through a message queue system:
sequenceDiagram
participant Lima
participant Queue
participant Agent
participant Storage
Lima->>Queue: Publish Task
Queue->>Agent: Deliver Task
Agent->>Storage: Read/Write Data
Agent->>Queue: Publish Result
Queue->>Lima: Deliver Result
Message Format
{
"taskId": "task-uuid-12345",
"agentTarget": "ALPHA001",
"type": "lead_validation",
"payload": {
"data": {...},
"config": {...}
},
"metadata": {
"source": "LIMA001",
"priority": "high",
"timestamp": "2026-01-16T10:00:00Z"
}
}
Error Handling
flowchart TB
Task[Task Received]
Process[Process Task]
Success{Success?}
Retry{Retries Left?}
Complete[Mark Complete]
RetryTask[Retry Task]
Escalate[Escalate to India]
Human[Human Review]
Task --> Process
Process --> Success
Success -->|Yes| Complete
Success -->|No| Retry
Retry -->|Yes| RetryTask
RetryTask --> Process
Retry -->|No| Escalate
Escalate --> Human
Retry Policy
| Agent Type | Max Retries | Backoff | Escalation |
|---|---|---|---|
| Intake | 3 | Exponential | India |
| Processing | 2 | Linear | India |
| Output | 5 | Exponential | India |
| Orchestration | 1 | None | Human |
Performance Metrics
Each agent tracks:
| Metric | Description |
|---|---|
totalTasks | Lifetime task count |
successRate | Percentage successful |
avgProcessingTime | Mean execution time (ms) |
avgConfidence | AI confidence score (0-100) |
totalCost | Cumulative USD spent |
Agent Capabilities Matrix
Alpha Bravo Charlie Delta Echo Foxtrot Golf Hotel India Juliet Kilo Lima
Data Validation ✓
Routing ✓ ✓
OCR Processing ✓
Decision Logic ✓
External Research ✓
Content Gen ✓
Video Gen ✓
Communication ✓
Human Routing ✓
Analytics ✓
ML Feedback ✓
Orchestration ✓
Scaling Model
Horizontal Scaling
Each agent can be instantiated multiple times:
flowchart LR
subgraph pool [Alpha Agent Pool]
A1[Alpha-1]
A2[Alpha-2]
A3[Alpha-3]
end
LB[Load Balancer]
LB --> A1
LB --> A2
LB --> A3
Vertical Specialization
Agents can be fine-tuned for specific domains:
flowchart TB
subgraph generic [Generic Delta]
DG[Delta - Base]
end
subgraph specialized [Specialized Deltas]
DM[Delta - MoneyMatcher]
DE[Delta - EHMP]
DC[Delta - Custom]
end
DG --> DM
DG --> DE
DG --> DC
Next Steps
- Training System — How agents learn
- Individual Agents — Meet each agent