90-Session Training System
Every agent in the Crella Engine undergoes a rigorous 90-session training program before reaching full operational status.
Training Philosophy
We believe that AI agents, like human employees, require structured training to perform consistently. Our 90-session program ensures:
- Consistency — Predictable behavior across edge cases
- Quality — High accuracy on domain-specific tasks
- Efficiency — Optimized processing times
- Safety — Proper handling of sensitive data
Training Levels
flowchart LR
subgraph levels [Training Progression]
L1[Learning<br/>0-30 sessions]
L2[Trained<br/>31-60 sessions]
L3[Expert<br/>61-90 sessions]
end
L1 --> L2 --> L3
Level 1: Learning (0-30 sessions)
- Basic task execution
- Error pattern identification
- Human supervision required
- Limited autonomous authority
Level 2: Trained (31-60 sessions)
- Consistent task completion
- Reduced error rates
- Partial autonomous operation
- Complex task handling
Level 3: Expert (61-90 sessions)
- Full autonomous operation
- Edge case handling
- Training other agents
- Mission-critical tasks
Current Training Status
| Agent | Sessions | Status | Progress |
|---|---|---|---|
| Alpha | 8/90 | Learning | ████░░░░░░ 9% |
| Bravo | 5/90 | Learning | ██░░░░░░░░ 6% |
| Charlie | 6/90 | Learning | ███░░░░░░░ 7% |
| Delta | 8/90 | Learning | ████░░░░░░ 9% |
| Echo | 9/90 | Learning | ████░░░░░░ 10% |
| Foxtrot | 10/90 | Learning | █████░░░░░ 11% |
| Golf | 11/90 | Learning | █████░░░░░ 12% |
| Hotel | 12/90 | Learning | ██████░░░░ 13% |
| India | 13/90 | Learning | ██████░░░░ 14% |
| Juliet | 14/90 | Learning | ███████░░░ 16% |
| Kilo | 15/90 | Learning | ████████░░ 17% |
| Lima | 67/90 | Trained | █████████░ 74% |
Lima's Experience
Lima (the Orchestrator) has the most training sessions because coordinating workflows requires deep understanding of all other agents. Lima is approaching Expert status.
Training Session Structure
Each training session follows a structured format:
flowchart TB
subgraph session [Training Session]
Brief[Briefing<br/>5 min]
Task[Task Execution<br/>45 min]
Review[Human Review<br/>5 min]
Feedback[Feedback Integration<br/>5 min]
end
Brief --> Task --> Review --> Feedback
1. Briefing (5 minutes)
- Task objectives review
- New capability introduction
- Edge case scenarios
2. Task Execution (45 minutes)
- Real-world task processing
- Performance monitoring
- Error logging
3. Human Review (5 minutes)
- Output quality assessment
- Error analysis
- Success/failure determination
4. Feedback Integration (5 minutes)
- Model weight adjustment
- Prompt refinement
- Knowledge base update
Training Metrics
Each session tracks:
| Metric | Target | Description |
|---|---|---|
| Task Accuracy | >90% | Correct output percentage |
| Processing Time | <spec | Under time threshold |
| Confidence Score | >70% | AI certainty level |
| Error Rate | <5% | Failed task percentage |
| Edge Case Handling | >80% | Complex scenario success |
Graduation Requirements
To advance from one level to the next:
Learning → Trained (30 sessions)
- 90%+ accuracy on standard tasks
- <3% error rate
- Handle 5+ task types
- Pass 3 consecutive reviews
Trained → Expert (60 sessions)
- 95%+ accuracy on complex tasks
- <1% error rate
- Handle all task types
- Pass 10 consecutive reviews
- Demonstrate edge case mastery
Mission-Specific Training
Beyond general training, agents receive mission-specific sessions:
MoneyMatcher Mission
- DSCR calculation validation
- Loan document terminology
- Lender guideline matching
- Property valuation patterns
Sequoia EHMP Mission
- Healthcare terminology
- Broker qualification criteria
- Email personalization rules
- LinkedIn research patterns
Training Dashboard
Track training progress for all agents:
╔════════════════════════════════════════════════════════════════╗
║ CRELLA ENGINE TRAINING ║
╠════════════════════════════════════════════════════════════════╣
║ Agent │ Level │ Sessions │ Next Session │ Accuracy ║
╠═══════════╪══════════╪══════════╪══════════════╪═══════════════╣
║ Alpha │ Learning │ 8/90 │ Scheduled │ 98.2% ║
║ Bravo │ Learning │ 5/90 │ Scheduled │ 97.5% ║
║ Charlie │ Learning │ 6/90 │ Scheduled │ 95.1% ║
║ Delta │ Learning │ 8/90 │ Scheduled │ 92.3% ║
║ Echo │ Learning │ 9/90 │ Scheduled │ 88.4% ║
║ Foxtrot │ Learning │ 10/90 │ Scheduled │ 96.1% ║
║ Golf │ Learning │ 11/90 │ On Hold │ 90.2% ║
║ Hotel │ Learning │ 12/90 │ Scheduled │ 94.3% ║
║ India │ Learning │ 13/90 │ Scheduled │ 97.1% ║
║ Juliet │ Learning │ 14/90 │ Scheduled │ 99.2% ║
║ Kilo │ Learning │ 15/90 │ Scheduled │ 95.6% ║
║ Lima │ Trained │ 67/90 │ Scheduled │ 99.1% ║
╚════════════════════════════════════════════════════════════════╝
Next Steps
- Meet the Agents — Individual agent profiles
- Missions — Active deployments